
Implementing Role Based Access Control
using Object Technology

John Barkley
NIST
B266 Tech
Gaithersburg MD 20899
(301) 975-3346
jbarkley@nist.gov
Tue Nov 28 08:31:40 EST 1995

With Role Based Access Control (RBAC), each role is associated with a set of operations which a user in that role may perform.
The power of RBAC as an access control mechanism is the concept that an operation may theoretically be anything. This is
contrasted to other access control mechanisms where bits or labels are associated with information blocks. These bits or labels
indicate relatively simple operations, such as, read or write, which can be performed on an information block. Operations in
RBAC may be arbitrarily complex, e.g., ``a night surgical nurse can only append surgical information to a patient record from a
workstation in the operating theater while on duty in that operating theater from midnight to 8 AM.'' A goal for implementing
RBAC is to allow operations associated with roles to be as general as possible while not adversely impacting the administrative
flexibility or the behavior of applications.

Consider the possible activities associated with defining and modifying roles:

● Add a role and its associated operations.
● Remove a role and its associated operations.
● Modify an existing role:

❍ Add an operation.
❍ Remove an operation.
❍ Modify an existing operation.

Information is usually accessed by applications based on a fixed set of operations defined by the mechanism or processor which is
used to access the information. Applications are built based on a fixed set of operations which they routinely perform. For
example, Unix files are accessed by the operations defined by the procedures: open(), close(), read(), write(), fseek(), etc.; tables in
a relational data base are accessed by the operations defined by SQL.

Modifying the operations available to an application can have a great impact on an existing application. Removing an operation or
modifying the semantics of an operation seriously affects an application's functioning and can produce very unpredictable results.

Figure 1: Implementing RBAC with layered objects

One approach which can be used to maintain flexible administration, minimize impact on applications, and maintain a significant
capability for defining complex role operations is to use Object Technology in the following manner (see fig. 1). A complete set of
operations based on access methods associated with the information storage mechanism is defined and held fixed. These are the
operations that are made available to an application. These operations become the methods in a basic access methods class.

Access control for the basic access methods class is provided by role classes, one for each defined role. The methods of the role
classes have the same names, types and parameters as the methods of the basic access methods class. Access control to the
information accessed by the basic access methods class is located exclusively in the role classes and not in any other part of the
application. The bodies of the methods in the role classes are restricted to:

● conditionals which determine access for the role associated with that role class; and/or
● filters which constrict the flow of information between the application interface and the basic access methods.

If access is permitted for a role, the methods of the role class then invoke the corresponding methods of the basic access methods
class. If not all information obtained by the basic access methods is permitted to a role, then the parts of the information not
permitted can be filtered out. Filtering may be more desirable in a application rather than generating an access violation for the
entire information block.

The methods of the application interface class also have the same names, types and parameters as the methods of the basic access
methods class. The methods of the application interface class invoke the corresponding methods of the role classes. It is the
methods of an application interface object which the application invokes. Given the current role associated with the application,
the methods of the application interface object select the appropriate role object.

This approach has the following advantages:

● Applications need not change when access conditions for roles are changed.

Applications use the methods of the application interface class whose methods have the same names, types, and parameters
as the methods in the basic access methods class. The methods of the application interface class and the methods of the
basic access methods class are fixed and remain constant over time. When access conditions for roles change, applications
fail only because of access violations. This type of failure is comparable to the failures that typically occur when
information protection bits or labels are changed. Applications are normally implemented to be able to handle access
violations.

● Access conditions for roles are easily changed.

Access conditions for roles are located exclusively within the role classes. Consequently, role policy changes do not require
modifications to the applications themselves. One can conceive of a simple language, suitable for use by data and security
administrators, for expressing access conditions restricted to conditionals and filters. A processor for such a language could
generate the role objects and place them in the libraries used by applications. Most environments today support
dynamically linked libraries which link when an application is loaded into memory for execution. Thus, applications do not
need to be relinked when role classes are changed. This ability to easily change access conditions associated with roles
permits rapid response to policy changes.

Figure 2: Example basic access methods class for accessing patient information

The C++ example in the appendix illustrates the approach. The appendix provides a complete C++ example which may be

compiled and run. In actual practice, RBAC roles, operations, and policy can be numerous and complex. In order to simplify this
example, only a small subset of the roles, operations, and policy that would normally be required are illustrated.

This example has the following operations which can be performed by applications on a patient record database:

Get patient ID list
This operation obtains a complete list of patient names and their IDs.

Get patient record
This operation obtains the patient record given the patient ID.

Figure 2 shows C++ code for a basic access methods class (Access_PRDBO) which has methods (GetIDinfo(), and GetPR()) for
performing these operations.

Figure 3: Example role classes for accessing patient information

Figure 3 shows C++ code for role classes associated with a patient (Pat_PRDBO) and doctor role (Doc_PRDBO). These role
classes inherit from a base class (Role_PRDBO) which defines the names, types, and parameters for the methods which
correspond to the methods in the basic access methods class. The patient and doctor role classes together implement the following
RBAC policy:

● Only Doctors are permitted to read the list of patient names and IDs.
● Doctors are permitted to read the records for all patients.
● Patients are only permitted to read their own record.

In order to ensure that patients only access their own records, the patient role object (Pat_PRDBO) calls a system procedure which
returns the patient ID for the user.

Figure 4: Example application interface class for accessing patient information

Figure 5: Example procedure to locate the proper role object

Figure 4 shows the application interface class (PRDBO) used by applications. When an object of this class is instantiated and a
method of that object is called, that method first calls a system procedure (get_role()) which returns the user's current role. The
method then calls another system procedure (get_role_obj()) which returns a pointer to the role object for that role. This procedure
is shown in Figure 5. Finally, the method calls its corresponding method in the role object passing its input arguments to the role
object method.

... Footnote:
Some operations may be available to more than one role, e.g., a credit account may be read by both a bank teller and a bank

supervisor.

About this document ...

Presented at the First ACM Workshop on Role Based Access Control, November 1995

Author's email address:

John Barkley - jbarkley@nist.gov, (301) 975-3346

This document was generated using the LaTeX2HTML translator Version 0.6.4 (Tues Aug 30 1994) Copyright © 1993, 1994,
Nikos Drakos, Computer Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html -split 0 -t RBAC and Object Technology titlewkshp.tex.

The translation was initiated by John Barkley on Tue Nov 28 08:31:29 EST 1995

John Barkley
Tue Nov 28 08:31:29 EST 1995

Appendix

Updated C++ example:
(the original version follows the updated version)

-------------------------- applint_update.cc ---------------------------------

//
// C++ Example of Role Based Access Control
// Implementation Using Object Technology
//
// John Barkley
// (jbarkley@nist.gov)
//
// This C++ program illustrates the implementation of RBAC using Object
// Technology. In this example, there are two methods which provide
// a healthcare application with access to patient records:
// GetIdinfo() - provides a list of patient names and their IDs
// GetPR(pid) - given a patient ID, returns the patient record
// These two methods are associated with several classes:
// Access_PRDBO - this class provides the basic access methods
// to patient information
// Role_PRDBO - the abstract role class
// Pat_PRDBO - the patient role class
// Doc_PRDBO - the doctor role class
// PRDBO - the application programming interface class
//
// For each role, there is a role class for that role derived from the
// abstract role class. The methods in each role class contain the
// conditions under which a user in that role may perform the
// corresponding methods in a basic access methods class (Access_PRDBO in
// this example). The methods in the basic access methods class perform
// actions on the information. The methods in each role class are invoked
// by corresponding methods in the application programming interface
// class (PRDBO in this example).
//
// This approach permits much of the generality of the RBAC concept of
// "action" to be realized, i.e., once the basic actions on information
// have been established, any conditions permitting actions on information

http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html
http://cbl.leeds.ac.uk/nikos/personal.html

// specified in an RBAC policy may be implemented. In addition,
// this approach permits roles to be created, removed, and modified
// without having to recompile either the application or the basic access
// methods class. When a role is added, removed, or modified in the
// policy, a role class is added, removed, or modified.
//
// This example is an update of:
// http://www.itl.nist.gov/div897/staff/barkley/rbacot/applint_cc.txt
// It was compiled using GNU gcc version 3.4.4:
// gcc applint_update.cc -lstdc++
//
#include <stdio.h>
#include <iostream>
#include <strstream>

const int ROLE_NAME_LENGTH = 50;
const int NUMBER_OF_ROLES = 2;

typedef char *Idlist;
typedef char *Patrec;
typedef int Patid;

extern char * get_role();
extern int get_user_pid();
extern "C" void exit(int);

// basic access methods class

class Access_PRDBO{
 public:
 Idlist GetIdinfo(){
 return("Here's the list of patients and their IDs\n");
 };
 Patrec GetPR(Patid pid){
 const int BUFLEN = 128;
 static char buf[BUFLEN];
 static std::ostrstream oss(buf, BUFLEN, std::ios::out);

 oss.seekp(std::ios::beg);
 oss << "Here's the patient record for patient ID: "
 << pid << std::endl << std::ends;
 return(buf);
 };
};
Access_PRDBO access_prdbo;

// role classes:
// one for each role derived from the abstract class Role_PRDBO

class Role_PRDBO{
 public:
 virtual Idlist GetIdinfo()=0;
 virtual Patrec GetPR(Patid patid)=0;
};

class Pat_PRDBO:public Role_PRDBO{
 public:
 // the policy does not permit patients to access
 // the list of patient names and their IDs

 virtual Idlist GetIdinfo(){
 return("ERROR: patient cannot access patient id list\n");
 };
 // the policy only permits a patient to have access
 // to his own patient information

 virtual Patrec GetPR(Patid pid){
 if (pid == get_user_pid())
 return(access_prdbo.GetPR(pid));
 else
 return("ERROR: patients cannot get other's records\n");
 };
};
static Pat_PRDBO pat_prdbo;

class Doc_PRDBO:public Role_PRDBO{
 public:
 // the policy permits doctors to have access
 // to all information on any patient

 virtual Idlist GetIdinfo(){
 return(access_prdbo.GetIdinfo());
 };
 virtual Patrec GetPR(Patid pid){
 return(access_prdbo.GetPR(pid));
 };
};
static Doc_PRDBO doc_prdbo;

// this procedure, which must be changed when roles are added or deleted,
// would be a system call which finds the the role object given the
// user's role

Role_PRDBO *get_role_obj(char *role_name){
 struct{
 char role_name[ROLE_NAME_LENGTH];
 Role_PRDBO *role_object;
 } role_tab[NUMBER_OF_ROLES] =
 {
 {"patient", &pat_prdbo},
 {"doctor", &doc_prdbo}
 };
 for(int i=0; i<NUMBER_OF_ROLES; i++)
 if (strcmp(role_name, role_tab[i].role_name) == 0)
 return(role_tab[i].role_object);
 return((Role_PRDBO *) NULL);
};

// application interface class

class PRDBO{
 public:
 Idlist GetIdinfo(){
 char * role_name;
 Role_PRDBO *roleobj;
 role_name = get_role();
 roleobj = get_role_obj(role_name);
 if (roleobj == (Role_PRDBO *)NULL)
 return("ERROR: no such role\n");
 return(roleobj->GetIdinfo());
 };
 Patrec GetPR(Patid patid){
 char * role_name;
 Role_PRDBO *roleobj;
 role_name = get_role();
 roleobj = get_role_obj(role_name);
 if (roleobj == (Role_PRDBO *)NULL)
 return("ERROR: no such role\n");
 return(roleobj->GetPR(patid));
 };
};
PRDBO prdbo;

// this procedure would be a system call to return the user's current role

char * get_role(){
 static char role_name[ROLE_NAME_LENGTH];
 std::cout << "Enter role name: ";
 std::cin >> role_name;
 return(role_name);
};

// this procedure would be a system call to return the user's patient ID

int get_user_pid(){
 int pid;
 std::cout << "Enter user's patient id: ";
 std::cin >> pid;
 return(pid);
};

main(){
 char opt;
 Patid pid;
 while(1){
 std::cout << "Enter i-GetIdlist, r-GetPR: " ;
 std::cin >> opt;
 if (!std::cin) {std::cout << std::endl; exit(0); };
 switch (opt) {
 case 'i' : std::cout << prdbo.GetIdinfo() << std::endl;
 break;

 case 'r' : std::cout << "Enter patient id: ";
 std::cin >> pid;
 std::cout << prdbo.GetPR(pid) << std::endl;
 break;
 };
 };
};

-------------------------- end of applint_update.cc ------------------------

Original version:

------------------------------- applint.cc ---------------------------------

//
// C++ Example of Role Based Access Control
// Implementation Using Object Technology
//
// John Barkley
// (barkley@sst.ncsl.nist.gov)
//
// This C++ program illustrates the implementation of RBAC using Object
// Technology. In this example, there are two methods which provide
// a healthcare application with access to patient records:
// GetIdinfo() - provides a list of patient names and their IDs
// GetPR(pid) - given a patient ID, returns the patient record
// These two methods are associated with several classes:
// Access_PRDBO - this class provides the basic access methods
// to patient information
// Role_PRDBO - the abstract role class
// Pat_PRDBO - the patient role class
// Doc_PRDBO - the doctor role class
// PRDBO - the application programming interface class
//
// For each role, there is a role class for that role derived from the
// abstract role class. The methods in each role class contain the
// conditions under which a user in that role may perform the
// corresponding methods in a basic access methods class (Access_PRDBO in
// this example). The methods in the basic access methods class perform
// actions on the information. The methods in each role class are invoked
// by corresponding methods in the application programming interface
// class (PRDBO in this example).
//
// This approach permits much of the generality of the RBAC concept of
// "action" to be realized, i.e., once the basic actions on information
// have been established, any conditions permitting actions on information
// specified in an RBAC policy may be implemented. In addition,
// this approach permits roles to be created, removed, and modified
// without having to recompile either the application or the basic access
// methods class. When a role is added, removed, or modified in the
// policy, a role class is added, removed, or modified.
//
// This example was compiled using the GNU C++ compiler.

//
#include <stdio.h>
#include <iostream.h>
#include <strstream.h>

const int ROLE_NAME_LENGTH = 50;
const int NUMBER_OF_ROLES = 2;

typedef char *Idlist;
typedef char *Patrec;
typedef int Patid;

extern char * get_role();
extern int get_user_pid();
extern "C" void exit(int);

// basic access methods class

class Access_PRDBO{
 public:
 Idlist GetIdinfo(){
 return("Here's the list of patients and their IDs\n");
 };
 Patrec GetPR(Patid pid){
 const int BUFLEN = 128;
 static char buf[BUFLEN];
 static ostrstream oss(buf, BUFLEN, ios::out);

 oss.seekp(ios::beg);
 oss << "Here's the patient record for patient ID: "
 << pid << endl << ends;
 return(buf);
 };
};
Access_PRDBO access_prdbo;

// role classes:
// one for each role derived from the abstract class Role_PRDBO

class Role_PRDBO{
 public:
 virtual Idlist GetIdinfo()=0;
 virtual Patrec GetPR(Patid patid)=0;
};

class Pat_PRDBO:public Role_PRDBO{
 public:
 // the policy does not permit patients to access
 // the list of patient names and their IDs

 virtual Idlist GetIdinfo(){
 return("ERROR: patient cannot access patient id list\n");
 };

 // the policy only permits a patient to have access
 // to his own patient information

 virtual Patrec GetPR(Patid pid){
 if (pid == get_user_pid())
 return(access_prdbo.GetPR(pid));
 else
 return("ERROR: patients cannot get other's records\n");
 };
};
static Pat_PRDBO pat_prdbo;

class Doc_PRDBO:public Role_PRDBO{
 public:
 // the policy permits doctors to have access
 // to all information on any patient

 virtual Idlist GetIdinfo(){
 return(access_prdbo.GetIdinfo());
 };
 virtual Patrec GetPR(Patid pid){
 return(access_prdbo.GetPR(pid));
 };
};
static Doc_PRDBO doc_prdbo;

// this procedure, which must be changed when roles are added or deleted,
// would be a system call which finds the the role object given the
// user's role

Role_PRDBO *get_role_obj(char *role_name){
 struct{
 char role_name[ROLE_NAME_LENGTH];
 Role_PRDBO *role_object;
 } role_tab[NUMBER_OF_ROLES] =
 {
 {"patient", &pat_prdbo},
 {"doctor", &doc_prdbo}
 };
 for(int i=0; i<NUMBER_OF_ROLES; i++)
 if (strcmp(role_name, role_tab[i].role_name) == 0)
 return(role_tab[i].role_object);
 return((Role_PRDBO *) NULL);
};

// application interface class

class PRDBO{
 public:
 Idlist GetIdinfo(){
 char * role_name;
 Role_PRDBO *roleobj;
 role_name = get_role();
 roleobj = get_role_obj(role_name);

 if (roleobj == (Role_PRDBO *)NULL)
 return("ERROR: no such role\n");
 return(roleobj->GetIdinfo());
 };
 Patrec GetPR(Patid patid){
 char * role_name;
 Role_PRDBO *roleobj;
 role_name = get_role();
 roleobj = get_role_obj(role_name);
 if (roleobj == (Role_PRDBO *)NULL)
 return("ERROR: no such role\n");
 return(roleobj->GetPR(patid));
 };
};
PRDBO prdbo;

// this procedure would be a system call to return the user's current role

char * get_role(){
 static char role_name[ROLE_NAME_LENGTH];
 cout << "Enter role name: ";
 cin >> role_name;
 return(role_name);
};

// this procedure would be a system call to return the user's patient ID

int get_user_pid(){
 int pid;
 cout << "Enter user's patient id: ";
 cin >> pid;
 return(pid);
};

main(){
 char opt;
 Patid pid;
 while(1){
 cout << "Enter i-GetIdlist, r-GetPR: " ;
 cin >> opt;
 if (!cin) {cout << endl; exit(0); };
 switch (opt) {
 case 'i' : cout << prdbo.GetIdinfo() << endl;
 break;
 case 'r' : cout << "Enter patient id: ";
 cin >> pid;
 cout << prdbo.GetPR(pid) << endl;
 break;
 };
 };
};

	Local Disk
	RBAC and Object Technology

